

The potential of digitalisation Energy and Sustainability

Prof François Marechal Ecole Polytechnique Fédérale de Lausanne EPFL Valais-Wallis CH-1950 Sion Importance of digitalisation in the energy sector

Companies invest more in energy tech startups, led by ICT sector

Corporate venture capital and growth equity for energy tech startups reached USD 6 billion in 2017; companies are taking strategic positions in a changing energy system, digital firms above all others.

© OECD/IEA 2018

iea

1IPESE

world energy investment 2018, IEA.org

(IIII) Energy efficiency and digitalisation

$[kJe_{saved} / kJe_{used in ICT}] = 5$

Market = 400 b\$

15.2 PWh		3.3 PWh	3.2 PWh	2.7 PW	h 2.7	PWh	2.2 PWh	1.2 PWh	
around 10 % of total		Power	Transportation	Manufacturing	Service & consumer	Agricul & land	ture use Build	dings	
Change levers		Digitalization & dematerialization	n	VideoconferencingTelecommuting		E-commerceE-paperOnline media			
		Data collection & communication	 Demand management Time-of-day pricing 	 Eco-driving Real-time traffic alerts Apps for intermodal transportation Asset sharing/crowd sourcing 		 Public safety/ disaster management Smart water 	 Soil monit Weather forecasting Smart wat Livestock managem 	coring/ g ter ent	
		System integration	 Integration of renewables Virtual power plant Integration of off-grid renewables & storage 	 Integration of EVs Intelligent traffic management Fleet management & telematics 				 Integra of rene Buildin manag system 	tion wables ^{1g} ement
		Process, activity & functional optimization	Power-load balancingPower grid optimization	 Optimization of truck route planning Optimization of logistics network	 Optimization of variable-speed motor systems Automation of industrial processes 	 Minimization of packaging Reduction in inventory	• Smart farr	ning • Buildin • Voltage optimiz	eg design ع zation

Adapted from GESI Smater report 2020, 2014

Model predictive strategic control

Collazos et al., Computers and Chemical Eng. 2009

Integrative design : operation and investment

(IPESE

Multi stakeholders : Users - Investors - Utilities

- CAPEX : +180 CHF/month/100 m2 (i.e. + 4% real estate value (geneva, CH))
- OPEX : 100 CHF/month of Oil avoided (50 \$/bbl)
- Grid: 45% of electricity exported but Zero-Energy

 10^{3}

Offered stored energy and power by the system

Equivalent Battery

Equiv. Battery : cost 0

(PA

Power max = 1 hour Energy = 30% Mean cons Roundtrip = 1.0 - 0.95

The system can deviate on demand from forecasted operation

- Installed power is an asset for the grid
- Real time Exchange is the key => Blockchain

(PAL System level integration : micro grids

Decentralised electricity with advanced Fuel Cell System

Facchinetti, M, Daniel Favrat, and Francois Marechal. "Sub-atmospheric Hybrid Cycle SOFC-Gas Turbine with CO2 Separation." PCT/IB2010/052558, 2011.

(PA Challenges : process development

- Process manufacturing
 - 3D printing of processes
 - Pipeless systems
 - Supply chains integration
 - Factories of factories :

scaling by numbers vs by volume

Right size - Right place - Right time

Figure 5-4. Breakdown of 100 kW system – 60 kW fuel cell costs and production volume trends.

(PA Industrial system integration : circular economy

Heat and mass (waste) exchanges

Heat recovery Heat pumping ORC and steam Rankine cycle Energy and water integration Waste management Resource efficiency Industrial Symbiosis Combined fuel and heat

What can I share ?

(PAL Optimal strategic operation of process

Application example: batch process in Switzerland

- 5 production lines
- 2 final products (A and B)
- 2 raw materials and 5 intermediates

Subject to constraints of final products delivery quantities and dates

CO2 emission forecast for next two days based on the ENTSOE data base

Transparent data base

Predictions

Model based Optimal scheduling

https://www.entsoe.eu/data/map/

(PAL optimal predictive strategic operation

- What can I share ?
- With whom ?
- For which profit ?

System operation

- What is my status ?
- What are my predictions ?
- What are the predictions of the others ?

Billing

- What have been the flows exchanged ?
- Blockchain technologies ?

(PA Biorefineries : digitalisation challenges

Process design

- Process / technology model data bases
- Screening techniques
- Knowledge based design techniques
 - Group contribution methods
 - Artificial intelligence

Supply chain integration

- •Availability of ressources
- •Needs of products
- •Size of integrated production
- •Flexible processes
- •Remote control and automation

PFSF

(PA Systematic method for process system design options

Wasting 1.5 years of computation time stored in one paper?

Digitalisation

Open Data Shared data base Shared models Artificial Intelligence

• Knowledge (open & transparent) data bases of processes (process models) Develop surrogate models (e.g. Pareto sector profiles)

Gassner, Martin, and François Maréchal. Energy & Environmental Science 5, no. 2 (2012): 5768 - 5789.

M Digitalisation for decision support

Solutions generator using optimisation techniques

Solutions Browser KPI modeling Artificial Intelligence

> Solutions Report Multi-criteria Multi-stakeholders

(PA) Integrating solar energy in industrial processes

(IPESE

(I)A Industry is part of the renewable energy system !

Combined heat, fuel and storage

SNG : Synthetic Natural Gas

(PAL Integrated Circular Systems

Needs

• Big data

Multi-Energy infrastructure :

- operation
- planning

Business

- Resources
- Energy
- Water
- Waste

(PA) Challenges of Digitalisation for energy and environment

	 Capitalising knowledge – open data – open models – Artificial intelligence 	
System integration	– Decision support	Process development
 decentralised but integrat infrastructure & service management intermittent resources 	ted Digitalisation	 3D printing Interconnectivity Flexible/Robust Integrated automation
	Operation	
	 Monitoring Control : market and tradine Blockchain 	ng

For those interested :

IETS Annex XVIII

Digitalization, Artificial Intelligence and Related Technologies for Energy Efficiency and GHG Emissions Reduction in Industry

Mouloud Amazouz^a, Zoé Périn-Levasseur^a, Paul Stuart^b

^aNatural Resources Canada, CanmetENERGY, Varennes (CA) ^bPolytechnique Montréal, Montréal (CA)

Ressources naturelles Natural Resources Canada Canada

