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Wil Importance of digitalisation in the energy sector

Companies invest more in energy tech startups, led by ICT sector jea

Corporate investments in new energy technology companies, by sector of investing company
USD (2017) billion
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Corporate venture capital and growth equity for energy tech startups reached USD 6 billion in 2017;
companies are taking strategic positions in a changing energy system, digital firms above all others.

© OECD/IEA 2018

world energy investment 2018, IEA.org



Energy efficiency and digitalisation
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(1 vﬂ Smart energy system

Integration of renewable energy sources in the built environment
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Model predictive strategic control

Real time Tariff info

Sensors
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Monthly service costs [CHF/mon-100m?]
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Integrative design : operation and investment

Self-consumption and Self-sufficiency

---- MBC
— RBC

Energy balance and and Grid battery
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Multi stakeholders : Users - Investors - Utlilities
- CAPEX: +180 CHF/month/100 m2 (i.e. + 4% real estate value (geneva, CH))

« OPEX:-100 CHF/month of Oil avoided (50 $/bbl)
« Grid : 45% of electricity exported but Zero-Energy



(il System flexibility : smart houses/ processes are free battery

Offered stored energy and power by the system Equivalent Battery
Building performance (solution 1) = 10 | | | | | | | | | | | 104 |
Ind. Value (imp/exp/gen) E. 8 :_/—\’\l 90;;0 T dtri Bo?f?ff: Sotﬂqﬁw—/: = ® Apartment block (1970)
E [MWh] 34.8 / 00.0 / 00.0 3 = oun trlp e |C|ench ] E » EPFL-BESS
A : | = || o soluiont
' 5 4 / L i @
c - . O, O Solution Il
S o 7 o Solution Ill
@ o)
Building energy system design (solution 1) = 5] ] \ i
0 2
Unit Size Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec [s) ©
Heat pump 7.0 kW, g 3
Battery 0 KWh, (0] 10 OSOTTTIOIIR S A | FEE
Boiler 0 KWy, (&}
Water tank 022 m? 1 | I | | | | | | [ [ [ [ GL) "
Electric heater 14 KW, — F—
Heat tank 1.0 md ; 0.8 2
Photovoltaics 0 kWp, x = 8_
Solar thermal 0 m?2 — :
SOFC-CHP 0 KW 206 €
8 >
S o
g 0.2 w
0 2 l
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 10101 102 108
Annual equivalent battery performance Equivalent energy capacity cost [CHF/kWh]

Equiv. Battery: cost0 [ Ne System can deviate on demand from forecasted operation
Power max = 1 hour

Energy = 30% Meancons  ©INStalled power is an asset for the grid
Rounditrip = 1.0 - 0.95 « Real time Exchange is the key => Blockchain



Wil System level integration : micro grids

-0 Micro-grid_approach

lLeft : building design
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(il Decentralised electricity with advanced Fuel Cell System

Products :
—\> EA - o
Post combustion Electricity > 80 %
CO2 captured
H2O

Dcessing
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Facchinetti, M, Daniel Favrat, and Francois Marechal. “Sub-atmospheric Hybrid Cycle SOFC-Gas Turbine with CO2 Separation.” PCT/IB2010/052558, 2011.



(il Challenges : process development

Right size - Right place - Right time
e Process manufactu ring 100 kW PEM Stack Breakdown

— 3D printing of processes S
- Pipeless systems oo
— Supply chains integration . -

$0.00

— Factories of factories : S
. Sca I i n g by n u m b e rS VS by VO I u m e Figure 5-4. Breakdown of 100 kW system — 60 kW fuel cell costs and production volume trends.



Power

AUTONOMOUS SYSTEMS ¢

Parking mode

Power plant : 3.5 kWe (eff. >70%)
Battery : 5 kWh

Autonomy : 950 km
Cons : |.11/100 km

Gas Grid

SOFC-GT
Hybrid car

— REX operation
— Power to Wheel
SOC

CO?2 Grid
Data Grid

Data Grid
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Micro

Dimitrova, Zlatina, and Frangois Maréchal. "Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender." Renewable Energy 112 (2017): 124-142)

Fédérale de Lausanne



Wil Industrial system integration : circular economy

1[4 bio.kg FiNeERY
MIML‘J
e _-_._I'_ - Heat and mass (waste) exchanges

!r‘ P

L
""ut ;|'fﬂ ﬂeat recovgry
"l" eat pumping |

m' ORC and steam Rankine cycle
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Wil What can I share ?

rence: Siemens magazine, 2018
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Wil Optimal strategic operation of process

Application example: batch process in Switzerland

* 5 production lines
¢ 2 final products (A and B)
e 2 raw materials and 5 intermediates

Subject to constraints of final products delivery quantities and dates

CO2 emission forecast for next two days based on the ENTSOE data base

Model based

Transparent data base Predictions Optimal scheduling
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https://www.entsoe.eu/data/map/



Wil optimal predictive strategic operation
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Wil Industrial symbiosis digitization challenges

e System integration : identify opportunities
e\What can I share ?
e \With whom ?

Optimal
Integration

e For which profit ? My tools
Energy Audits
e System operation o
Monitoring Learning «~—

e What is my status ?
e What are my predictions ? Modeling

e \What are the predictions of the others ? Negociating

Billing
o Trading
e Billing

e \What have been the flows exchanged ?
e Blockchain technologies ? EP®S



Wil Biorefineries : digitalisation challenges
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Process design Supply chain integration
* Process / technology model data bases *Availability of ressources
- Screening techniques *Needs of products |
« Knowledge based design techniques *Size of integrated production

« Group contribution methods *Flexible processes |
« Artificial intelligence *Remote control and automation



{iil Systematic method for process system design options

Wasting 1.5 years of computation time stored in one paper 7

Gasification: Separation:

1600 FICFB PSA

© air drying = downstream
1500 F 4 + torrefaction = ypstream

* steam drying of methanation
1400 ¢ + torrefaction

pressurised FICFB Phys. abs.

- airdrying = downstream
1300

* air drying, gas turbine = upstream
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e Knowledge (open & transparent) data bases of processes (process models)
Develop surrogate models (e.g. Pareto sector profiles)

Gassner, Martin, and Francois Maréchal. Energy & Environmental Science 5,no.2 (2012): 5768 — 5789.



Wil Digitalisation for decision support

Total costs FAR Share RES Elec. dec. PV Gas import Qil import Wood import Clustering Representative
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Raw materials

Heat

Multi-energy system
=> flexibility assets
=> MPC

Industrial processes

—

Products
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Waste ﬂ
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Wallerand, Anna S., et al. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy." Renewable Energy (2017).

Specific CO2 emissions [%]
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_ t Heat pumping

50

40

30
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Grid electricity
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’ Solar energy
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Integrating solar energy in industrial processes

Original
Reference
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Fp® @ Heat recovery

Natural gas

Total annual cost TACM [ctEuro/101]




Wil Industry is part of the renewable energy system !

Combined heat, fuel and storage SNG : Synthetic Natural Gas

B Storage = Cogeneralion T Protovotaic = Demand W Total Production

Summer woop
100 MWy, gry

6000 |

170 MW SNG Fuel

38 MW Useful heat ")’

g 4500
é 37 MW Waste heat ‘
g Electricity H2 CO, (108 kg CO, avoided / MWh wood)
o 00 Demand = 59.5 TWhe 145 MWy, 4y 123 MWy, 4y
g
g
g WOOD 67.5 MW SNG
1500 » 100 MWy, gry

15.7 MW Useful heat (200 °C)

0 16.8 MW Waste heat
Jan Feb Mar A May June Juy Aug. Sep Oct Nov Dec

1.4 MW net electricity

Winter



(il Integrated Circular Systems

Needs
» Big data

TRAWSPORT

Multi-Energy infrastructure :
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iil Challenges of Digitalisation for energy and environment




| t
Industrial Energy-Related Technologies and Systems
An Implementing Agreement established under the auspices of the International Energy Agency

For those interested :

IETS Annex XVIII
Digitalization, Artificial Intelligence and Related Technologies
for Energy Efficiency and GHG Emissions Reduction in Industry

Mouloud Amazouz?, Zoé Périn-Levasseur?, Paul Stuart®

aNatural Resources Canada, CanmetENERGY, Varennes (CA) PPolytechnique Montréal, Montréal (CA)

I * I Ressources naturelles Natural Resources
Canada Canada m
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